Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Environ Res ; 236(Pt 2): 116815, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37541411

RESUMEN

Wastewater treatment remains the most significant delinquent issue world-wide. Generally, wastewater treatment involves filtration followed by acidified de-emulsification through photocatalytic reduction. The aim of the present study is to reduce the use of nanoparticles in wastewater treatment and also to find an appropriate alternative to replace cotton fiber filters used in water treatment plant. The cotton fiber filters are highly prone to bacterial film development leading to bactericidal degradation of the fibers. We developed a ZnO-chitosan nanocomposite coated fiber for wastewater treatment to enhance its photocatalytic activity under acidic condition. The fiber showed high degree of photocatalytic degradation activity, reducing rhodamine B dye, chemical oxygen demand and chromium levels in the synthetic wastewater to 37, 79 and 51% respectively under highly acidic condition. Additionally, ZnO-chitosan nanocomposite did not cause mortality on Danio rerio embryo after 72 h incubation. The ZnO-chitosan nanocomposite coated fiber showed strong antibacterial activity against Escherichia coli and Staphylococcus aureus with a reduction of 96% and 99% respectively. This study demonstrated the potential of a novel smart fiber in wastewater treatment and biomedical applications.


Asunto(s)
Quitosano , Nanocompuestos , Nanopartículas , Óxido de Zinc , Quitosano/química , Aguas Residuales , Óxido de Zinc/química , Antibacterianos/farmacología , Antibacterianos/química , Metales , Nanocompuestos/química , Catálisis
3.
Environ Res ; 231(Pt 2): 116158, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37201709

RESUMEN

Study investigated the antifouling potential ofRauvolfia tetraphyllaL. fruit, leaf and stem extracts against the marine fouling organisms throughin-vitroand in-silicoapproach. Methanolic crude extract of R. tetraphylla L.leaf exhibited maximum antibacterial potential against six fouling organisms isolated from Parangipettai coast and was further taken up for column fractionation. Twenty-four fractions were obtained, among which five fractions showed inhibitory efficiency against microfoulers of Bacillus megaterium. The active compounds present in the bioactive fraction were identified by FTIR, GC-MS and NMR (13C; 1H). The bioactive compounds that exhibited maximum antifouling activity were identified as Lycopersene (80%), Hexadecanoic acid; 1, 2-Benzenedicarboxylic acid, dioctyl ester; Heptadecene - (8) - carbonic acid - (1) and Oleic acid. Molecular docking studies of the potent anti-fouling compounds Lycopersene, Hexadecanoic acid, 1, 2-Benzenedicarboxylic acid, dioctyl ester and Oleic acid showed the binding energy of 6.6, - 3.8, -5.3 and -5.9 (Kcal/mol) and hence these compounds will act as a potential biocide to control the aquatic foulers. Moreover, further studies need to carry out in terms of toxicity, field assessment and clinical trial in order to take these biocides for a patent.


Asunto(s)
Incrustaciones Biológicas , Rauwolfia , Ácidos Grasos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Incrustaciones Biológicas/prevención & control , Simulación del Acoplamiento Molecular , Ácido Palmítico , Ácido Oléico , Carotenoides
5.
Environ Res ; 218: 115051, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521544

RESUMEN

In this study, an efficient microalgal strain SD07 was isolated from pond wastewater and identified as Scenedesmus sp. using the 18S rRNA gene sequence analysis. The strain SD07 was grown in a variety of concentrations (25-100%) of municipal wastewater. Scenedesmus sp. strain SD07 grown in 75% diluted wastewater produced a higher amount of biomass (1.93 ± 0.10 g L-1), and removal of chemical oxygen demand (COD), ammonium (NH4+), total nitrogen (TN) and total phosphate (TP) by 91.36%, 88.41%, 93.26% and 96.32%, respectively from wastewater. The harvested strain SD07 biomass has protein, carbohydrate and lipid contents of 35%, 20.4% and 33%, respectively. Fatty acid profiles revealed that the strain SD07 lipids mainly consist of palmitic acid (40.5%), palmitoleic acid (19%), linoleic acid (17%) and oleic acid (13.2%). Furthermore, strain SD07 cultured in 75% diluted wastewater produced 378 mg L-1 of exopolysaccharides (EPS). The EPS was utilized as a biostimulant in the cultivation of Solanum lycopersicum under salinity stress. In summary, these findings suggest that this Scenedesmus sp. strain SD07 can be employed for wastewater treatment as well as the production of valuable biomass, high-quality algal oil and EPS.


Asunto(s)
Microalgas , Scenedesmus , Aguas Residuales , Scenedesmus/metabolismo , Biocombustibles/análisis , Ácidos Grasos/metabolismo , Fosfatos/análisis , Biomasa , Nitrógeno/análisis
6.
Sci Total Environ ; 832: 154935, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35395302

RESUMEN

Aluminum (Al) toxicity is the main constraint for crop cultivation in acidic soils. In this study, Al-tolerant rhizobacteria Kosakonia radicincitans (CABV2) and actinobacteria Streptomyces corchorusii (CASL5) were isolated from Beta vulgaris rhizosphere in acidic soil. Both isolates displayed high tolerance to Al (10 mM), produce siderophores, indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate and solubilize phosphate. Co-inoculation of CABV2 and CASL5 strains were significantly increased the root length (312.90%), shoot length (183.19%), fresh weight (224.82%), dry weight (309.25%) and photosynthetic pigments (chlorophyll a 279.69%, chlorophyll b 188.23% and carotenoids 158.20%) of Solanum lycopersicum plants under 300 mg Al kg-1 soil conditions as compared to uninoculated Al stressed plants. Similarly, the co-inoculation treated plants subjected to Al stress condition enhanced the uptake of essential nutrients (N 229%, P 252%, K 115%, Fe 185%, Mg 345% and Ca 202%) by plants as compared to Al stressed uninoculated plants. Under Al stress (300 mg Al kg-1 soil), co-inoculation significantly decreased malondialdehyde content (66%), and increased catalase (83%), superoxide dismutase (82%), peroxidase (89%) activities and root exudates (organic acids 6.44-12.36 fold) in S. lycopersicum as compared to uninoculated plants, indicating that the CABV2 and CASL5 strains were reduced Al-induced oxidative stress. Moreover, co-inoculation significantly reduced Al accumulation in the root (89%), stem (95%) and leaves (94%) of S. lycopersicum under Al stress at 300 mg Al kg-1 soil, compared to the uninoculated plants. This is the first report of K. radicincitans strain CABV2 and S. corchorusii strain CASL5 potentially reducing Al uptake in S. lycopersicum.


Asunto(s)
Solanum lycopersicum , Aluminio/toxicidad , Clorofila A , Enterobacteriaceae , Raíces de Plantas , Suelo , Streptomyces
7.
Int J Mol Sci ; 23(5)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35269768

RESUMEN

Microalgae have received much interest as a biofuel feedstock. However, the economic feasibility of biofuel production from microalgae does not satisfy capital investors. Apart from the biofuels, it is necessary to produce high-value co-products from microalgae fraction to satisfy the economic aspects of microalgae biorefinery. In addition, microalgae-based wastewater treatment is considered as an alternative for the conventional wastewater treatment in terms of energy consumption, which is suitable for microalgae biorefinery approaches. The energy consumption of a microalgae wastewater treatment system (0.2 kW/h/m3) was reduced 10 times when compared to the conventional wastewater treatment system (to 2 kW/h/m3). Microalgae are rich in various biomolecules such as carbohydrates, proteins, lipids, pigments, vitamins, and antioxidants; all these valuable products can be utilized by nutritional, pharmaceutical, and cosmetic industries. There are several bottlenecks associated with microalgae biorefinery. Hence, it is essential to promote the sustainability of microalgal biorefinery with innovative ideas to produce biofuel with high-value products. This review attempted to bring out the trends and promising solutions to realize microalgal production of multiple products at an industrial scale. New perspectives and current challenges are discussed for the development of algal biorefinery concepts.


Asunto(s)
Microalgas , Biocombustibles , Biomasa , Microalgas/metabolismo
8.
Chemosphere ; 297: 134024, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35227743

RESUMEN

Industrial wastewater contains heavy metals, colors, dyes, cyanides, and natural manufactured compounds are expanding around the world. It prompts extreme water shortage just as water quality issues. With enhancing worldwide interest for clean and reestablish water for human utilization. Wastewater treatment with membrane innovation is arising as a main cycle to address the issues. In this current work, we have found the expulsion of dangerous metal particles utilizing a nano-ZnO (0.5 wt%) incorporated poly (ether ether sulfone) (PEES) nanofiltration membrane. The created membranes were reviewed by ATR-FTIR, AFM, SEM investigations, XRD, contact angle estimation, mechanical properties, pure water flux, porosity and molecular weight cut-off, arsenic, fluoride, and nitrate rejection studies were illustrated. Because of the hydrophilic nature of ZnO, the resultant membranes had better hydrophilicity than PEES membranes based on porosity, water content, surface chemistry, membrane morphology, and contact angle data. The Nano-ZnO incorporated membrane demonstrated a superior quality execution contrasted with neat PEES membrane. We discovered that the rejection of As(III) and As (V) were > 85% and > 98% separately, and an expanded permeability of 559.28 ± 2 Lm-2 h-1 and 297.95 ± 2 Lm-2 h-1 individually was seen at pH 10. Fluoride and nitrate particles additionally indicated the most extreme expulsion efficiencies were > 89% and > 75% separately. The prepared membrane samples were incubated in water (40 °C) and sodium hypochlorite solution (active chlorine concentration 400 mg/L) for up to 10 days to determine the stability of polymer membrane matrix. The general outcomes inferred that the nano-ZnO incorporated PEES membrane gave remarkable result to eliminate dangerous metal ions with moderate permeability.


Asunto(s)
Éter , Metales Pesados , Éteres , Fluoruros , Humanos , Membranas Artificiales , Metales Pesados/química , Nitratos , Sulfonas
9.
Chemosphere ; 293: 133473, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34974039

RESUMEN

Lignin from sugarcane bagasse was extracted using three different methods such as Alkaline, Ethanosolv, and Hydrotropic extraction and the effect of each method on yield and quality of bio-oil obtained when the lignin was depolymerized through solvothermal liquefaction was studied using ethanol as solvent. The maximum lignin yield was obtained in the hydrotropic extraction method when Sodium Xylene Sulfonate was used as the hydrotropic solvent at a concentration of 1.43 M and a temperature of 90 °C. Hydrothermal experiments were performed at temperature of 250 °C with a residence time of 30 min and lignin to ethanol ratio of 1:200 g/mL respectively. Among the methods used, the Ethanosolv lignin showed the highest extent of depolymerization (86.7%) to yield bio-oil at 250 °C with reduced biochar formation at lignin to solvent ratio of 1:200. Biochar obtained was used in adsorption studies of Cadmium (Cd), Lead (Pb), Nickel (Ni), and Zinc (Zn) and results showed that more than 85% removal of all the metals under lower concentration levels.


Asunto(s)
Lignina , Saccharum , Biocombustibles , Biomasa , Celulosa , Aceites de Plantas , Polifenoles , Agua
10.
Chemosphere ; 287(Pt 1): 132091, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34523436

RESUMEN

A variety of rare earth metals (La, Sm, Nd, Ce, Gd) doped cadmium sulfide (RE-CdS) grafted reduced graphene oxide (G) sheet nanocomposites estimated imperative attention due to their visible light-driven, tunable band gap and high surface to volume ratio were investigated for the photocatalytic degradation of cationic dye from aqueous solution. The formation of wurtzite (hexagonal) crystal structures of cadmium sulfide nanoparticles (NPs) was confirmed by Powder X-ray diffraction spectra and the average crystallite size was determined to be 10 ± 2 nm. HRTEM analysis confirmed the homogeneous distribution of RE-CdS NPs over the G sheets. The photocatalytic behaviour of the RE-CdS decorated G sheets was studied using a textile dye methylene blue (MB) under sunlight. The result indicates that among the various RE-CdS nanocomposites studied, Cerium-cadmium sulfide-reduced graphene oxide (Ce-CdS-G) shows highest MB degradation of 99.0 ± 0.4% within 90 min under sunlight. The result confirms that RE-CdS-G nanocatalyst efficiently accelerates the separation and slows down the recombination rate in photo excited charge carriers. The catalytic activity was retained over 80% of its original value even after four successive runs and the present method can be employed for the large-scale synthesis of RE-CdS-G nanocatalyst.


Asunto(s)
Nanopartículas , Aguas Residuales , Catálisis , Grafito , Luz
11.
Chemosphere ; 291(Pt 1): 132755, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34736940

RESUMEN

In the present study, fatty acid synthesis genes such as alpha and beta subunits of acetyl CoA carboxylase (accA and accD) were overexpressed in the glgC (Glucose-1-phosphate adenylyltransferase) knockout Synechocystis sp. PCC 6803. The biomass and lipid contents were evaluated in both the wild type and the engineered strains after copper treatment. The maximum lipid production of 0.981 g/L with the productivity of 81.75 mg/L/d was obtained from the copper treated ΔglgC + A-OX strain, which showed a 3.3-fold increase compared to the untreated wild type with satisfactory biodiesel properties. After copper treatment the knockout strain improved the unsaturated fatty acids level contributing to the increase of the saturated and mono-unsaturated ratio with improvement of the fuel quality. Copper induced oxidative stress also improved the photosynthetic pigments in engineered strains leading to increased tolerance against oxidative stress in the engineered strains. The copper treatment increased the antioxidant enzyme activities in the engineered strains especially in ΔglgC + A-OX strain. The carbon flux to lipid synthesis was enhanced by the engineered strains particularly with the knockout-overexpression strains. The Synechocystis sp. PCC 6803 engineered with ΔglgC + A-OX showed high potential for fuel production after the copper treatment.


Asunto(s)
Synechocystis , Cobre/toxicidad , Ácidos Grasos , Glucógeno/metabolismo , Lípidos , Estrés Oxidativo , Synechocystis/genética , Synechocystis/metabolismo
12.
Biotechnol Rep (Amst) ; 31: e00656, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34277365

RESUMEN

Microalgal omega-3 fatty acids are considered as an efficient alternative for fish-based omega-3 fatty acids. Ethyl esters derived from omega-3 fatty acids are being considered as the drug for hypertriglyceridemia. In this study, omega-3 fatty acids rich Chlorella sp. was utilized for the transesterification for the ethyl ester production using a potassium carbonate alkaline catalyst. At the optimized conditions of transesterification, 86.2% ethyl ester yield was achieved with solvent to algae ratio (20 mL/g), water addition (45 %), catalyst (4 %), temperature (75°C), and reaction time (60 min). Additionally, the acid-hydrolysed spent biomass was used for the production of ɛ-polylysine by fermentation using Streptomyces sp. as fermentative organism. The maximum yield of 1.78 g/L was achieved after 90 h fermentation. This study established a biorefinery approach where two highly valuable compounds could be produced from the Chlorella sp. by transesterification followed by fermentation.

13.
Chemosphere ; 285: 131491, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34329131

RESUMEN

This study involves the production of hydrocarbons from lignin extracted from sugarcane bagasse using Hydrothermal Liquefaction (HTL) followed by Hydrodeoxygenation (HDO). HTL of the lignin was studied under different solvents-methanol, ethanol and isopropanol in the presence of formic acid as an effective H-donor under varying lignin to solvent ratios (L:S = 1:15,1:30,1:40 g/mL), reaction temperatures (200 °C - 320 °C), reaction times (15, 30, 45,60 min) and ZnCl2 catalyst concentrations (30, 40, 50, 60 wt%). A maximum of 86% lignin derived phenolics was obtained when ethanol was used as solvent at 250 °C under L:S = 1:30 at 30 min reaction time with 60 wt% ZnCl2. The lignin-oil was upgraded by HDO process in the presence of Ni/Al2O3 catalyst and a maximum hydrocarbon yield of 73.5% was obtained with a HHV value of 48 MJ/kg. The hydrocarbons had excellent properties with a carbon range of C6-C12 with a purity of 51.2%.


Asunto(s)
Lignina , Saccharum , Biocombustibles , Celulosa , Etanol , Formiatos , Hidrocarburos
14.
Chemosphere ; 283: 131248, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34182640

RESUMEN

Hydrothermal liquefaction (HTL) of biomass results in the formation of bio-oil, aqueous phase (HTL-AP), bio-char, and gaseous products. Safer disposal of HTL-AP is difficult on an industrial scale since it comprises low molecular acid compounds. This review provides a comprehensive note on the recent articles published on the effective usage of HTL-AP for the recovery of valuable compounds. Thermo-chemical and biological processes are the preferred techniques for the recovery of biofuel, platform chemicals from HTL-AP. From this review, it was evident that the composition of HTL-AP and product recovery are the integrated pathways, which depend on each other. Substitute as reaction medium in HTL process, growth medium for algae and microbes are the most common mode of reuse and recycle of HTL-AP. Future research is needed to depict the mechanism of HTL process when HTL-AP is used as a reaction medium on an industrial scale. Need to find a solution for the hindrance in commercializing HTL process and recovery of value-added compounds from HTL-AP from lab scale to industry level. Integrated pathways on reuse and HTL-AP recycle helps in reduced environmental concerns and sustainable production of bio-products.


Asunto(s)
Biocombustibles , Hidrógeno , Biomasa , Temperatura , Agua
15.
Chemosphere ; 280: 130644, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33965865

RESUMEN

In this study, seven different cyanobacteria (LS01-LS07) were isolated from paddy field water and among them, the isolate LS04 was able to grow well on municipal wastewater. The LS04 isolate was identified as Nostoc sp. (designated as Nostoc sp. LS04) based on 16S rRNA gene sequence analysis. Strain LS04 grew well in 75% wastewater and had the greatest nutrients removal efficiency (81.02-95.17%). Strain LS04 obtained the higher biomass (1.31 ± 0.08 g L-1) and productivity of 131.33 ± 8.08 mg L-1 d-1. The lipid content and productivity of LS04 were 14.85 ± 0.86% (dry cell weight) and 19.46 ± 0.05 mg L-1 d-1, respectively. The high proportion of C16-C18 fatty acids found in the lipids of LS04 indicated the high suitability for biodiesel production. In addition, Nostoc sp. LS04 cellular extracts were potentially used as a biostimulant for Lactuca sativa cultivation. The foliar application of 60% LS04 cellular extracts showed the maximum shoot length, root length, fresh biomass, dry biomass, Chl a, Chl b and carotenoids in lettuce plants compared to control plants. Similarly, 60% of LS04 cellular extracts treatment improved the concentrations of macro and micronutrients, and biochemical compounds in the leaves. Therefore, these results reveal that the Nostoc sp. LS04 is a promising candidate for the nutrients removal from wastewater and their biomass is a potential resource for biodiesel production and biostimulant for sustainable crop production.


Asunto(s)
Microalgas , Nostoc , Biocombustibles/análisis , Biomasa , Extractos Celulares , Lactuca , Nostoc/genética , ARN Ribosómico 16S , Aguas Residuales
16.
Bioresour Technol ; 329: 124868, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33707076

RESUMEN

Algae is abundantly present in our ecosystems and can be easily extracted and used for production of biopolymers. Algae does not produce any anthropogenic, harmful effects, has a good growth rate, and cultivable in wastewater. This literature elucidates the potential of algae biomass by comparing various seaweed and microalgae strains. The routes for biopolymer production were portrayed and their novel methods of isolation such as microwave assisted, ultrasound assisted, and subcritical water assisted extraction are discussed in detail. These novel methods are observed to be highly efficient compared to conventional solvent extraction, with the microwave assisted and ultrasound assisted processes yielding 33% and 5% more biopolymer respectively than the conventional method. Biopolymers are used in variety of applications such as environmental remediation, adsorbent and antioxidant. Biopolymer is shown to be highly effective in the removal of potentially toxic elements and is seen to extract more than 40 mg PTE/g biopolymer.


Asunto(s)
Ecosistema , Microalgas , Biomasa , Biopolímeros , Aguas Residuales
17.
Bioresour Technol ; 325: 124632, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33485084

RESUMEN

In this study, finger millet straw (FMS) was utilized for the production of Polyhydroxybutyrate (PHB) by Bacillus megaterium strain CAM12. Ultrasound-assisted alkaline (NaOH) pretreatment of FMS under optimized conditions followed by enzymatic saccharification resulted in the maximum delignification (72%), hydrolysis yield (84%), glucose yield (86%) and xylose yield (61%). The effects of different pH, temperature, incubation period, inoculum concentration, agitation speed and FMS enzymatic hydrolysates concentration were investigated to improve the PHB production. Under optimized conditions, strain CAM12 used the FMS hydrolysates as the sole carbon source for their growth and produced 8.31 g L-1 of PHB. The extracted polymer on Fourier transform infrared (FTIR), X-ray diffraction (XRD) and Nuclear magnetic resonance (NMR) analyses were confirmed to be PHB. These results suggest the potential of combined ultrasound and alkaline pretreated FMS hydrolysates as a promising feedstock for PHB production.


Asunto(s)
Bacillus megaterium , Eleusine , Carbono , Hidrólisis , Xilosa
18.
Bioresour Technol ; 319: 124193, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33035864

RESUMEN

In this study, Rhizopus oligosporus MTCC 556 (Rhizopus) treated rice bran was utilized for the anaerobic bacterial fermentative hydrogen production. The Enterobacter aerogenes MTCC 2822 with nutrients addition fermented the treated rice bran to give hydrogen yield of 5.4 mmol H2/g of biomass. A closely similar hydrogen yield of 4.6 mmol H2/g of biomass was obtained from the treated rice bran under the condition without nutrients addition, suggesting the potential of the fungus treatment to produce hydrogen from nutrient-free fermentation. The pretreated rice bran showed efficient hydrogen production upon anaerobic fermentation without nutrients addition. The Rhizopus pretreated biomass can provide required nutrients for the enhancement of hydrogen yield by anaerobic fermentation. The Rhizopus pretreatment of rice bran enhanced the hydrogen production under nutrient-free conditions which reduced the overall production cost. The findings provide a promising solution to efficiently utilize the rice bran waste for low cost hydrogen production.


Asunto(s)
Oryza , Rhizopus , Anaerobiosis , Fermentación , Hidrógeno , Nutrientes
19.
Sci Total Environ ; 765: 142707, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33069475

RESUMEN

In this study, a one pot facile synthesis of ferromagnetic manganese ferrite nanoparticles (MnFe2O4) was carried out using chemical co-precipitation method for mineralization of azo dye (Congo red (CR)) in aqueous solution under visible light irradiation. The synthesized MnFe2O4 nanoparticles were highly crystalline and showed face-centred cubic (FCC) structure with average particle size of 58 ± 4 nm. The BET analysis of the MnFe2O4 nanoparticles revealed the mesoporous distribution of material with high surface area can provide large electro active sites and short diffusion paths for the transport of ions which plays a vital role in the photocatalytic degradation of CR. The point of zero charge (pHPZC) was observed to be 6.7 indicating favourable condition for material-anionic dye interaction. The XPS studies revealed that the large amounts of oxygen vacancies were produced due to the defects in the lattice oxygen. The MnFe2O4 nanoparticles mineralised 98.3 ± 0.2% of 50 mg/L CR within 30 min when tested in photocatalytic reactor under 565 nm. The particles were recoverable under the influence of an external magnet after the photocatalytic reaction and were reusable. The recovered nanoparticles showed 96% of CR degradation efficiency even after five cycles of reuse. The by-product analysis with GC-MS indicated mineralization of CR into simple alcohols and acids. The aqueous solution containing mineralised CR was nontoxic to Trigonella foenumgraecum and Vigna mungo seeds and favoured increased germination, plumule and radicle length when compared to untreated CR.


Asunto(s)
Imanes , Nanopartículas , Catálisis , Compuestos Férricos , Luz , Compuestos de Manganeso
20.
Sci Total Environ ; 755(Pt 2): 142636, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33065504

RESUMEN

Algae a promising energy reserve due to its adaptability, cheap source, sustainability and it's growth ability in wastewater with efficient sequestration of industrial carbon dioxide. This review summarizes the pathways available for biofuel production from carbon sequestered algae biomass. In this regard, this review focuses on microalgae and its cultivation in wastewater with CO2 sequestration. Conversion of carbon sequestered biomass into bio-fuels via thermo-chemical routes and its engine emission properties. Energy perspective of green gaseous biofuels in near future. This review revealed that algae was the pre-dominant CO2 sequester than terrestrial plants in an eco-friendly and economical way with simultaneous wastewater remediation. Hydrothermal liquefaction of algae biomass was the most preferred mode for biofuel generation than pyrolysis due to high moisture content. The algae based fuels exhibit less greenhouse gases emission and higher energy value. This review helps the researchers, environmentalists and industrialists to evaluate the impact of algae based bio-energy towards green energy and environment.


Asunto(s)
Dióxido de Carbono , Microalgas , Biocombustibles , Biomasa , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...